Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Despite their lack of a rigid structure, intrinsically disordered regions (IDRs) in proteins play important roles in cellular functions, including mediating protein-protein interactions. Therefore, it is important to computationally annotate IDRs with high accuracy. In this study, we present Disordered Region prediction using Bidirectional Encoder Representations from Transformers (DR-BERT), a compact protein language model. Unlike most popular tools, DR-BERT is pretrained on unannotated proteins and trained to predict IDRs without relying on explicit evolutionary or biophysical data. Despite this, DR-BERT demonstrates significant improvement over existing methods on the Critical Assessment of protein Intrinsic Disorder (CAID) evaluation dataset and outperforms competitors on two out of four test cases in the CAID 2 dataset, while maintaining competitiveness in the others. This performance is due to the information learned during pretraining and DR- BERT’s ability to use contextual information.more » « less
- 
            Abstract Background: Results: To address these issues, we introduce a novel adaptive semi-quantitative group testing (SQGT) scheme to e ciently screen populations via two-stage qPCR testing. The SQGT method quantizes cycle threshold (Ct) values into multiple bins, leveraging the information from the rst stage of screening to improve the detection sensitivity. Dynamic Ct threshold adjustments mitigate dilution e ects and enhance test accuracy. Comparisons with traditional binary outcome GT methods show that SQGT reduces the number of tests by 24% on the only complete real-world qPCR group testing dataset from Israel, while maintaining a negligible false negative rate. Conclusion: In conclusion, our adaptive SQGT approach, utilizing qPCR data and dynamic threshold adjustments, o ers a promising solution for e cient population screening. With a reduction in the number of tests and minimal false negatives, SQGT holds potential to enhance disease control and testing strategies on a global scale. Keywords: Group testing, Pooled testing, Semiquantitative group testing, qPCR, Ct values, Viral load, COVID-19more » « less
- 
            Abstract BackgroundPathogenic infections pose a significant threat to global health, affecting millions of people every year and presenting substantial challenges to healthcare systems worldwide. Efficient and timely testing plays a critical role in disease control and transmission prevention. Group testing is a well-established method for reducing the number of tests needed to screen large populations when the disease prevalence is low. However, it does not fully utilize the quantitative information provided by qPCR methods, nor is it able to accommodate a wide range of pathogen loads. ResultsTo address these issues, we introduce a novel adaptive semi-quantitative group testing (SQGT) scheme to efficiently screen populations via two-stage qPCR testing. The SQGT method quantizes cycle threshold (Ct) values into multiple bins, leveraging the information from the first stage of screening to improve the detection sensitivity. DynamicCtthreshold adjustments mitigate dilution effects and enhance test accuracy. Comparisons with traditional binary outcome GT methods show that SQGT reduces the number of tests by 24% on the only complete real-world qPCR group testing dataset from Israel, while maintaining a negligible false negative rate. ConclusionIn conclusion, our adaptive SQGT approach, utilizing qPCR data and dynamic threshold adjustments, offers a promising solution for efficient population screening. With a reduction in the number of tests and minimal false negatives, SQGT holds potential to enhance disease control and testing strategies on a global scale.more » « less
- 
            It is well recognized that population heterogeneity plays an important role in the spread of epidemics. While individual variations in social activity are often assumed to be persistent, that is, constant in time, here we discuss the consequences of dynamic heterogeneity. By integrating the stochastic dynamics of social activity into traditional epidemiological models, we demonstrate the emergence of a new long timescale governing the epidemic, in broad agreement with empirical data. Our stochastic social activity model captures multiple features of real-life epidemics such as COVID-19, including prolonged plateaus and multiple waves, which are transiently suppressed due to the dynamic nature of social activity. The existence of a long timescale due to the interplay between epidemic and social dynamics provides a unifying picture of how a fast-paced epidemic typically will transition to an endemic state.more » « less
- 
            Abstract In Fall 2020, universities saw extensive transmission of SARS-CoV-2 among their populations, threatening health of the university and surrounding communities, and viability of in-person instruction. Here we report a case study at the University of Illinois at Urbana-Champaign, where a multimodal “SHIELD: Target, Test, and Tell” program, with other non-pharmaceutical interventions, was employed to keep classrooms and laboratories open. The program included epidemiological modeling and surveillance, fast/frequent testing using a novel low-cost and scalable saliva-based RT-qPCR assay for SARS-CoV-2 that bypasses RNA extraction, called covidSHIELD, and digital tools for communication and compliance. In Fall 2020, we performed >1,000,000 covidSHIELD tests, positivity rates remained low, we had zero COVID-19-related hospitalizations or deaths amongst our university community, and mortality in the surrounding Champaign County was reduced more than 4-fold relative to expected. This case study shows that fast/frequent testing and other interventions mitigated transmission of SARS-CoV-2 at a large public university.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available